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Abstract

In this paper, we investigate the issue of evaluating ef-
ficiently a large set of models on an input image in detec-
tion and classification tasks. We show that by formulating
the visual task as a large matrix multiplication problem,
something that is possible for a broad set of modern de-
tectors and classifiers, we are able to dramatically reduce
the rate of growth of computation as the number of models
increases. The approach, based on a bilinear separation
model, combines standard matrix factorization with a task-
dependent term which ensures that the resulting smaller size
problem maintains performance on the original task. Ex-
periments show that we are able to maintain, or even ex-
ceed, the level of performance compared to the default ap-
proach of using all the models directly, in both detection
and classification tasks. This approach is complementary
to other efforts in the literature on speeding up computa-
tion through GPU implementation, fast matrix operations,
or quantization, in that any of these optimizations can be
incorporated.

1. Introduction
As techniques for object detection and image classifica-

tion tasks become increasingly powerful, one can contem-
plate using them in applications in which a large number
of models are used. However, as the number of models
increases, so does the computation effort involved, to the
point that the computational cost may become prohibitive.
In this paper, we investigate a general approach to effi-
ciently run a broad class of detection and classification al-
gorithms by estimating their responses on an input image
using a bilinear separation model which is much more com-
putationally economical than evaluating every model. The
starting point of our approach is the well-known observation
that, conceptually, many common detection and classifica-
tion algorithms can be summarized in a rather general form
[28, 18, 22, 27, 26]:

R = WTX,W∈RD×M , X∈RD×N , (1)

where M is the number of models (e.g., HOG templates in
object detection or weights for bag of words feature in im-
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Figure 1: The illustration of the training and testing phase
of the proposed bilinear separation model (BSM). The left
picture illustrates the training phase of BSM: the low-rank
matrices U and V are learned to mimic the behaviour of the
original model W in terms of the prediction performance.
Whereas the right picture illustrates the testing phase of
BSM for efficient model evaluation: the HOG patch is first
projected to the low-rank basis U (red) and then evaluated
with V (blue), which contains the predictors for different
models.

age classification problems), N is the number of data points
to evaluate, e.g., the number of windows in a detection task,
and D is the dimension of the feature. The way the models
W are learned and the features used in X , of course, de-
pends on the specific approach but the fundamental opera-
tion applied to an input image reduces to (1). Our approach
relies on approximating this operation in order to reduce
the computation spent on this matrix-matrix multiplication,
which is, in many cases, the most computational intensive
operation in vision algorithms.

The general form of (1) applies to many standard ap-
proaches both in detection and classification. For exam-
ple, the popular object detection paradigm, i.e., sliding win-
dow search with linear classifiers over HOG representation
[3, 10, 18, 14], can be easily put in the form (1). In this
setting, the matrix W∈RD×M consists of the stacked pa-
rameters wi, i = 1, 2, ...,M∈RD corresponding to each
model, i.e., the linear classifier trained over the HOG fea-
ture. Similarly, each column of the matrix X is the HOG
feature vector extracted from a specific sliding window in



the HOG pyramid of the image. Furthermore, as for the
more complicated part-based models, the form (1) could
also be applied to get the part responses (as well as the
root response) followed by a distance transform to get the
final scores. In the realm of image classification, the Im-
ageNet dataset and the associated challenge has become
a benchmark for large-scale image classification problem
[5]. Among various state-of-the-art approaches on this chal-
lenge, many different features and encoding methods are
employed [17, 15]. However, most share the same way of
applying the classifiers to an input image, that is to evalu-
ate all the models, represented by a matrix W in which the
vectors of weights of all the models are stacked, on all the
images X: R = WTX as in (1).

As implied by (1), the computational complexity of eval-
uatingM models onN data points withD dimensional fea-
ture is O(MDN), which would easily become prohibitive
as all these three parameters scale up quickly [18, 25]. In or-
der to apply (1) in a more efficient way, a natural approach
would be to use a low-rank approximation for the param-
eter matrix W = UV T , U∈RD×L, V ∈RM×L, thus trans-
forming the problem into the form R = WTX = V UTX ,
which is much more efficient if L, the constrained rank,
is small enough compared with D. An intuitive way of
accomplishing this low-rank approximation is to apply an
SVD-based matrix decomposition to W , which implicitly
minimizes the reconstruction error ||W − UV T ||2 subject
to the rank constraint. However, this “obvious” approach is
not appropriate. First, the objective minimized by this ap-
proach is not directly related to the prediction performance
of model evaluation. Second, this factorization does not
take into account any data for the specific task. We pro-
pose in this paper a novel approach that addresses these two
problems by using a bilinear separation model, which has
been successfully applied in many different computer vision
tasks [28, 22, 12, 31]. We propose to learn a bilinear model
by optimizing the criteria that is directly related to the pre-
diction performance for specific tasks. As we will show
in Section 2, the proposed factorization can be computed
with a coordinate-descend method based on its bi-convexity
property [13, 22].

Many previous works have been published to address
the computation issues in vision tasks. The work most re-
lated to ours are from Ramanan et al. [21] and Song et al.
[27, 26], which are both based on the idea of decompos-
ing classifiers to efficiently evaluate (1). However, there are
significant differences with our work. In [21], they decom-
pose the weight parameters for each single classifier which
corresponds to one column of W in equation (1). Whereas
our idea is to find out the factors shared among all classi-
fiers. [27, 26] use sparse coding to learn an overcomplete
basis whereas we directly learn a low-rank compact basis
which preserves the predicting capability. Also, previous

works directly use their approximation as the detection re-
sponses, instead we show that we can use a re-evaluation
step to recover the detection performance, which relaxes the
need for the approximation accuracy while maintaining the
high performance on the specific tasks. Furthermore, our
work differs from the prior works in that it has the capa-
bility of exploiting pre-trained models: instead of training
from scratch, our method is able to treat pre-trained models
as black boxes and mimic their behaviour while being much
more efficient. Finally, we show that our method is able to
achieve performance almost identical to directly evaluating
(1) which is hard for both [21] and [27, 26].

Other works attempt to reduce either the number of win-
dows evaluated, or the number of models evaluated. The
cascaded methods are applied to select testing windows
that are with high probability containing objects through
cheaper operations [29, 9, 20]. More recent approaches
propose that, instead of modelling the probability of con-
taining certain objects (meaning with supervision), they di-
rectly model the interestingness of image windows with-
out any supervision [19, 1, 7]. A complementary line of
research aims at reducing the number of models M . For
example, Pirsiavash et al. propose to use the shared steer-
able filters as the basis for constructing a large number of
part templates [21]. Also aiming at reducing the number of
models, Dean et al. take a different approach using locality-
sensitive hashing for model selection at every window [4]
in order to scale to 100000 categories1. In addition to these
two complementary lines of research, [24] accelerates the
model evaluation directly by vector quantization. Instead of
only selecting models or windows, we propose to estimate
the responses of every model on every window by a learned
bilinear separation model, then re-evaluate a small fraction
of the top-ranked “model-window” pairs, according to the
estimated response values, to recover the detection results
as if we have evaluated all the “model-window” pairs. Note
that even though we also select “model-window” pairs for
re-evaluation as [24] did, we take a very different approach
that follows the model evaluation procedure of many pub-
licly available object detector packages so that it is fairly
easy to integrate our approach.

Other approaches attempt to reduce computation by op-
timizing the computations involved in (1) directly, rather
than reducing the complexity of the model representation.
They include GPU implementations [2, 27], fast matrix op-
erations [6], or quantization [24]. It is important to note that
our approach is complementary to these efforts in that any
of these optimization can be incorporated in our approach
to achieve further speed-up.

Our contributions are threefold: (1) We present a method

1Girshick et al. [11] demonstrated that large matrix multiplication,
which is what we study in this paper, is much more efficient than hash-
ing technique.



that treats the pre-trained models as black boxes and mimic
their behaviours which enables us to exploit the large
amount of pre-trained models available nowadays. (2) We
present both theoretical and empirical results on the compu-
tation to show that our method scales gracefully as the num-
ber of models increases. (3) Our method is able to achieve
almost identical performance to the exhaustive model eval-
uation as we demonstrated on both object detection and im-
age classification tasks.

2. Learning a Bilinear Model for Efficient
Model Evaluation

In this section, our goal is to learn a low-rank approxi-
mation W≈UV T such that R̃ = V UTX gives us a good
estimation of R = WTX in terms of the task-specific pre-
diction performance. The general idea of the training and
testing phase of efficient model evaluation through low-rank
approximation is shown in Figure 1.

2.1. SVD on Model Parameters W

Before describing our approach, let us first look at an
intuitive way of accomplishing the low-rank approximation
and point out its shortcomings to motivate our approach.

The correlation among different models has been ex-
ploited by many approaches [27, 26]. The key observation
is that since models wi, i = 1, 2, ...,M are, in most cases,
highly related to each other, e.g., detectors of visually sim-
ilar objects, it makes sense to model this correlation to pro-
duce more compact representations for these models, and to
evaluate them more efficiently. One of the most intuitive ap-
proach to model the correlations is to apply Singular Value
Decomposition (SVD) over the stacked model parameters,
and obtain a low-rank approximationW≈UDV T , in which
U serves as a low-rank projection basis whereas each row
of V as the combination coefficients on this basis for each
model. Thus, the model evaluation could be approximated
as:

R̃ = (V D)UTX = V̄ UTX,U∈RD×L, V̄ ∈RM×L, (2)

where V̄ = V D. This computation could therefore be done
by first computing Xp = UTX , which is a low-rank pro-
jection of the data, and then R̃ = V̄ Xp.

There are two problems with this seemingly reasonable
approach. First, the SVD-decomposition is implicitly opti-
mizing the objective ||UV̄ T −W ||2 subject to the low-rank
constraint. However, there is no guarantee on the perfor-
mance of the specific tasks by optimizing the above objec-
tive. For example, it is possible to have a pair of U1 and
V̄1 which has lower value according to the above objective
function, but has poorer prediction performance on the de-
sired task than another pair U2 and V̄2. Second, the form
||W −UV̄ T ||2 does not take into account any data, whereas

in the form (1), WT is applied to the data matrix X . Di-
rectly optimizing ||W−UV̄ T ||2 is equivalent to making the
assumption that each dimension of our data (visual features
extracted from images) has the same magnitude in expecta-
tion, which is clearly not the case. To overcome these two
problems, we propose to learn a low-rank Bilinear Separa-
tion Model (BSM) which we can still apply as shown in (2),
by optimizing an objective that is data-dependent and di-
rectly related to the prediction performance. It is called a
bilinear form because it is linear with regard to each of the
two variables over which we aim to optimize given another
is fixed.

2.2. Bilinear Separation Model

To justify the objective we propose to optimize, we take
the object detection task as an example for illustrative pur-
pose. The similar reasoning holds for the image classifi-
cation task. We first introduce some notations to help us
formalize the derivation of our model: Xi and Xj denote
the ith column and jth row of matrix X , respectively. Con-
sequently, Xj

i refers to the element on the ith column and
jth row of X.

The evaluation of (1) provides scores for objects and
their locations. Usually a threshold is then applied on this
response matrix R to obtain the candidate detections, i.e.,
the “model-window” pairs. Therefore, what we really care
about for an estimate of R, or the quality of an estimate of
R, is that for those “model-window” pairs that are above
the threshold {Rij |(i, j)∈Sc(t)}2, they remain above the
threshold in the approximation R̃ whereas for those pairs
below the threshold, it is desirable they remain below the
threshold as well. More formally, we want an approxima-
tion R̃ such that the following conditions are satisfied:

R̃ij≥t,∀(i, j)∈Sc(t)
R̃ij < t,∀(i, j) 6∈Sc(t).

(3)

In order to enforce the separation constraint in (3), one
would like the estimation R̃ to be penalized if it estimates
a point to be above the threshold that is in fact below
the threshold and vice versa. We show that this could be
achieved using the following loss function:

L1(R̃ij , yij) = max(0,−yij ·R̃ij), (4)

where yij∈{−1, 1} is a variable indicating whether the cor-
responding value in the ground-truth response matrix Rij is
above the threshold:

yij = 1{Rij≥t}, (5)

where the function 1{·} returns 1 while the statement is
true, -1 otherwise. Although it represents the constraint

2Sc(t) is used to denote the set of “model-window” pairs
(model index,window index) that are above the threshold t.



shown in (3), the loss function in (4) is a non-smooth func-
tion. To make use of many solvers designed for smooth
functions, we choose to optimize the squared version of (4):

L2(R̃ij , yij) = max(0,−yij ·R̃ij)
2. (6)

Note that this squaring operation is similar to theL2-loss for
SVM [16]. Having the loss function representing the con-
straint (3), which is directly related to the prediction per-
formance, we can then apply this loss function (6) to the
low-rank approximation R̃ = V UTX , which leads to the
following objective function3:

J =
∑M

i=1

∑Ni

j=1 L2(V iUTX
(i)
j , y

(i)
j ) + γ||W − UV T ||2,

U∈RD×L, V ∈RM×L.
(7)

Recall that M is the number of models, X(i)∈RD×Ni

is the data matrix for model i, Ni is the number of data
points for the ith model and X(i)

j is the jth column of X(i).

Similarly, y(i) is a vector of variables for model i, y(i)j is the

indicating variable for the jth data point X(i)
j . V i is the ith

row of matrix V .
The first term in (7) enforces the squared separation loss

function over the low-rank approximation R̃ = V UTX .
Thus, the learned bilinear model U and V are well-tuned
to predict whether or not a “model-window” pair would be
a candidate detection. Also, the data X(i)

j in the first term
makes it a data-dependent term compared with direct SVD
over W . The data-dependency enforces adaptation to the
distribution of the training data. The second term γ||W −
UV T ||2 is exactly the objective of the SVD approach in
Section 2.1 multiplied by a scalar weight γ, which serves to
regularize the optimization.

Note that our objective function is closely related to other
forms of matrix factorization in machine learning, e.g.,
max-margin matrix factorization [23]. However, there are
also important differences between those approaches and
ours. Recall that M and D are the number of models and
the dimension of features. First, suppose that there is no
rank constraint on U and V , which means that the sizes of
U and V are [D×min(M,D)] and [M ×min(M,D)], re-
spectively. Thus, the optimum of the objective (7) is exactly
the original model parameter W , since both the first and the
second term of (7) would be zero. That is, our formulation
will get closer and closer to the original parameter matrix
W as the rank constraint is relaxed. On the contrary, the
max-margin matrix factorization enforces a large-margin
loss function, i.e., an SVM-like hinge loss max(0, 1−y·x),

3In practice, both the original model wi and our learned bilinear model
incorporate a bias term bi, here for the simplicity of the formulation, we
assume that data is pre-processed to zero-mean, which does not affect any
conclusion made here.

which prevents it from recovering the original model pa-
rameters W even when we relax the rank constraint.

Although we used the object detection task to explain our
approach, the proposed optimality objective also applies to
the image classification problem: instead of being image
patches as in detection, X in (1) becomes feature from the
global image in the image classification task.

2.3. Optimization

The objective shown in (7) is quadratic and therefore
convex, with respect to the optimizing variable V when U
is fixed, and vice versa. This property is called bi-convexity
and has been extensively studied [13]. Because of the bi-
convexity, (7) could be optimized using a coordinate de-
scend method alternating between optimizing V and U .

Initialization: Since the problem is not jointly convex
in U and V , a careful initialization is required. With a given
rank L, we choose to initialize the low-rank projection basis
U and the coefficients V with the SVD over W , which is
equivalent to the second term in the objective (7).

Updating V: When U is fixed, the updating of V is
straightforward. The matrix V can be updated by sequen-
tially updating each row of V , which correspond to the co-
efficients on the basis U for different models. The sub-
problem of optimizing each row of V can be formulated
as the following convex program and thus be solved using
the Quasi-Newton method.

min
V i

Ni∑
j=1

L2(V iUTX
(i)
j , y

(i)
j ) + γ||Wi − UV iT ||2. (8)

Updating U: The updating step of the low-rank pro-
jection basis U is not as obvious as updating V . How-
ever, it is still a convex problem with respect to U when
V is fixed. The optimization over U can be done by up-
dating one column Uk once. Let us first look at the first
term of (7), which is the loss function over the approx-
imation. For a data point X(i)

j , the loss function over

it, as shown in (7), is in the form L2(V iUTX
(i)
j , y

(i)
j ),

which could be re-written as L2(tr(V iUTX
(i)
j ), y

(i)
j ) =

L2(tr(UTX
(i)
j V i), y

(i)
j ). By fixing all columns of U ex-

cept for the kth one, the form could be further re-written
as: L2(tr(UTX

(i)
j V i), y

(i)
j ) = L2(UT

k X
(i)
j V i

k +bkij , y
(i)
j ).

Where bkij =
∑

l 6=k U
T
l X

(i)
j V i

l , which is a constant when
all columns of U are fixed except for the kth one. The
gradient ∂L2

∂Uk
can be easily computed as 2(UT

k X
(i)
j V i

k +

bkij)·X(i)
j V i

k when −y(i)j (UT
k X

(i)
j V i

k + bkij) > 0, whereas
being 0 otherwise. Similarly, the regularization term
in (7) could also be decomposed as ||W − (UkV

T
k +∑

l 6=k UlV
T
l )||2 = ||W (k) − UkV

T
k ||2, where W (k) =

W −
∑

l 6=k UlV
T
l . Therefore, we get the following sub-

problem, which we also optimize with the Quasi-Newton



method:

min
Uk

M∑
i=1

Ni∑
j=1

L2(UT
k X

(i)
j V i

k+bkij , y
(i)
j )+γ||W (k)−UkV

T
k ||2,

(9)
Note that all the computations described in this section are
performed once and for all during training BSM model.

2.4. Computational Analysis

We analyze the computation cost of applying (2) com-
pared with directly applying the original form (1). The
computational complexity of evaluating (1) is O(MDN).
However, for (2), the low-rank projection Xp = UTX is
first computed, which has complexityO(LDN), whereL is
the constrained rank. Then, the coefficient matrix V is mul-
tiplied with Xp which has complexity of O(MLN). Theo-
retically, the ratio of computation complexity of evaluating
(2) and (1) is LDN+MLN

MDN = L(D+M)
MD . As M , which is the

number of models, becomes very large, the above term be-
comes L/D. This means that, as we have more and more
models, the maximum speed-up we can achieve is D/L,
which is the ratio between the original feature dimension
and the low-rank projected feature dimension. As we will
show in Section 3, this value could be very large without
sacrificing prediction performance, in both object detection
and image classification. One thing to mention is that fea-
ture computation, together with model evaluation, consti-
tute the actual computation time in our evaluation, therefore
there is discrepancy between the empirical speed-up in ex-
periments and the theoretical analysis. We also note that
all the sophisticated acceleration from the hardware side
(e.g., GPU, MKL) could also be used combining with our
approach, which could further accelerates the operation.

2.5. BSM for Object Detection
In order to apply our method to any object detection al-

gorithm, we replace the model evaluation in (1) with the
low-rank form (2) to get R̃, an estimate of R, which con-
tains the actual responses of all models on all windows.
Then, a small fraction of the “model-window” pairs (i, j)
with the highest estimated responses in R̃ are re-evaluated
using the actual modelwi and featureXj (high-dimensional
HOG template which is typically in the order of thousands
of dimensions). Ideally, we would like all the elements inR
that are above the threshold to remain above the threshold
in R̃. After re-evaluating the “model-window” pairs, stan-
dard post-processing steps like Non-maximum Suppression
(NMS) are applied to generate the final detections. In terms
of the parameters, we then have 3 important parameters in
this pipeline: 1) the constrained rank L in (2), and 2) the ra-
tio of the re-evaluated “model-window” pairs 0 < p < 1, as
well as 3) the BSM specific parameter γ which is the weight
for the regularizer in (7).

2.6. BSM for Image Classification

For image classification, each column of X is the fea-
ture vector of one image, whereas each column of W is the
classifier for one image category. And UV T is the low-rank
approximation of matrix W . For testing, we simply replace
the form (1) with (2) while keeping all the other compo-
nents of the image classification system unchanged. The
parameters in the image classification setting are: 1) L, the
constrained rank, and 2) γ, the regularization weight. Note
that p is not involved in the image classification task since
we do not apply any re-evaluation in this setting.

3. Experiments
3.1. Object Detection

Setup: For the object detection experiments, we com-
pare the detection performance using the learned BSM to
the performance achieved by directly applying (1), as well
as the performance of the baseline method which also uses
the approximation form (2). For quantitative measure of
the performance, we use the standard mean average pre-
cision as well as the retrieval rate, which is defined as
Nretrieved/Ntotal. Nretrieved is the number of the candi-
date4 “model-window” pairs occurring in the top p of the
estimated responses in matrix R̃, whereas Ntotal is the total
number of the candidate “model-window” pairs in the full
matrix R. Ideally we want the retrieval rate to be 1 so that
the BSM-approximated model R̃ mimics the full matrix R.
This is an important performance indicator for BSM since
the closer to 1 the retrieval rate is, the closer the perfor-
mance of the BSM-approximated detection system is to the
performance of the full system.

We use the PASCAL VOC 2007 as the dataset for ob-
ject detection experiments [8]. As discussed in Section
2.4, a large model collection (i.e., large M ) is neces-
sary to demonstrate the benefits of our approach. There-
fore we choose to use Malisiewicz et al.’s Exemplar SVM
(ESVM)[18] method since it has a large number of pre-
trained models immediately available, which enables to use
a published baseline rather than retraining our own. Specif-
ically, there are 12608 ESVM models for exemplars across
20 categories. The ESVM models are trained using a sin-
gle positive data point with a large number of negative data
points (both are HOG feature vectors) to serve as the repre-
sentation of a particular exemplar. We use 12×12 templates
throughout our experiments so that D, the dimension of the
feature, is 12×12×31 = 4464 (the templates of size smaller
than 12×12 are padded to be 12×12 by placing them to the
upper-left corner of the enlarged templates). For a typical
image in the PASCAL VOC 2007 testing set, the number of
windows N , is within 15000-25000.

4By candidate “model-window” pairs, we refer to those pairs that have
responses above the threshold.
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Figure 3: The left graph shows the retrieval rate of both
SVD and BSM on all 20 categories of PASCAL VOC 2007
when p is fixed to 0.005. Whereas the right graph shows the
retrieval rate of both methods with varying p, the results are
averaged over 20 categories. It is clear that our method is
much better than the baseline in terms of the retrieval rate
measure over different categories and different p.

We note that even though we use ESVM to test our ap-
proach, we can use any detector that can be formulated as
(1). In particular, any window scanning detector would fit
our approach. We choose ESVM as a convenient way of us-
ing a large number of models to demonstrate the benefits of
our approach. In particular, we do not advocate that ESVM
is the best choice of detection algorithm on this dataset.

Data for Training the Bilinear Separation Model: In
order to obtain data for optimizing the objective (7), we
sample 500 positive images and 500 negative images for
each category from the trainval set of PASCAL VOC 2007.
With these 1000 images per category, the detectors are run
to gather the windows with scores above the threshold. To
gather the windows which have scores below the threshold,
we directly sample 10 random windows per image to form
a pool.

Efficient Model Evaluation Using Bilinear Separation
Model: We follow the standard evaluation protocol of PAS-
CAL VOC 2007 for ESVM, the SVD baseline (SVD) as
well as the proposed bilinear separation model (BSM). For
the SVD baseline and BSM, the exemplar models W are
replaced by the rank-L matrices U and V . Then, after ob-
taining an approximation R̃ as shown in (2), a small fraction
0 < p < 1 of the “model-window” pairs with the highest
estimated responses are re-evaluated. Then, NMS and the
co-occurrence matrix are applied to get the final detection
results as in [18].

The detection performance of 6 out 20 categories on the
PASCAL VOC 2007, measured by the mean average pre-
cision, is shown in Figure 25. As we can see, BSM outper-
forms the baseline method by a large margin and has almost
the same performance as the exhaustive model evaluation
used in ESVM (measured by mean AP 22.3% vs 22.6%).
Also, the simple SVD approach (Section 2.1) does not work
well (mean AP 20.2% vs 22.6%) due to the shortcomings
discussed in Section 2.1.

5For the full results on all 20 categories, please see our supplementary
material.
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Figure 4: The visualization of the column of U , which is
the low-rank projection basis, learned from optimizing (7).
We show 6 entries from basis of 6 different categories. The
visualization is in both HOG glyph[3] and inverted HOG
[30]. The spatial invariance is clearly encoded in the tv-
monitor category, in which one can see the contours of TV
monitors with different scales.

Another important performance measure that affects the
final mean AP is the retrieval rate, as defined above. The
comparison of the retrieval rate of SVD baseline and BSM
are shown in Figure 3. As we can see, the retrieval rate
of the proposed BSM method largely outperforms the base-
line method on all 20 categories, which is consistent with
the superior performance in terms of the mean AP measure.
Also, the retrieval rate with varying p (while L is fixed), the
ratio of the re-evaluated models, is shown in Figure 3. The
results in Figure 3 are averaged over all 20 categories.

To better understand what has been learned by optimiz-
ing the BSM objective (7), we visualize some entries of the
low-rank projection basis, i.e., the columns of matrix U , for
various categories in Figure 4 using both the HOG glyph
[3] and iHOG [30]. There are several interesting points we
would like to note in Figure 4: 1) For categories that have
more coherent appearances across large number of exem-
plars, the basis learned through BSM is visually meaning-
ful, for example, the categories aeroplane, bicycle, bottle,
car, person, etc. 2) For categories that have large intra-
category appearance variations, for example the cat cate-
gory, the learned basis does not seem to be visually mean-
ingful. This is also consistent with the poor detection per-
formance on that category. 3) By looking at the basis of the
tvmonitor category, we can clearly see the scale invariance
encoded in the basis by the contours of the TV monitors
with different scales.

For all the results in Figure 2, L, which is the rank of U
and V , is set to 0.01×D = 45, whereas p, the ratio of the re-
evaluated “model-window” pairs, is set to 0.005. Another
parameter specifically for BSM, γ in (7), is set to 0.1.

Parameter Sensitivity: In order to understand the ef-
fects of different parameters, L, p and γ. We select 5 out of
20 categories, namely aeroplane, bicycle, boat, horse and
train, to perform a parameter search over the grid L = D×
{0.004, 0.006, 0.008, 0.01}, p = {0.005, 0.01, 0.015, 0.02}
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Figure 2: The Precision-Recall curve of 6 out 20 categories in PASCAL VOC 2007 with three methods: the standard ESVM
(cyan), the SVD baseline (blue) and the proposed BSM (red). As we can see, on most categories, the performance of BSM
outperforms the SVD baseline with a large margin, and is almost the same with ESVM, which evaluates all “model-window”
pairs exhaustively.
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Figure 5: The left 3 columns show the effects of varying
the parameters L, p and γ. Two out of three parameters
L = D×0.01, p = 0.005 and γ = 0.1 are fixed to see
the effect of another parameter. The first row shows the ef-
fects of different parameters on the mAP measure whereas
the second row shows the effects on the retrieval rate. In
all plots except for those of γ, which is not a parameter in
the SVD baseline, both the SVD baseline and the proposed
BSM are plotted. The graph on the right-end is the com-
parison of the computation of model evaluation between di-
rectly applying (1) (ESVM) and applying low-rank approx-
imation (BSM).

and γ = {0.01, 0.1, 1, 10, 100}. To show the effects of
different parameters, we plot both the mAP measure and
retrieval rate in Figure 5. Two of the three values L =
D×0.01, p = 0.005 and γ = 0.1 are fixed to show the
effect of another parameter. As we can see from Figure 5,
1) The performance increases as we increase L, which is
the rank-constraint. 2) BSM outperforms SVD with a large
margin on all sets of parameters. 3) Also, the performance
measured by mAP is not sensitive to p, this means that we
do not need a large p, which incurs more computation, to
get a good detection performance. 4) BSM prefers a small
γ which emphasizes the importance of the data-dependent
term.

Computation Efficiency: Since the main reason for
using low-rank approximation to the parameter matrix is
computation efficiency, we perform experiments to study
the computational benefits in object detection with BSM
compared with the standard ESVM detection. Since we
are interested in the effect of using low-rank approxima-

tion for model evaluation, we do not consider the time for
all pre- and post-processing like computing the HOG and
Non Maximum Suppression. We conduct experiments on
the person category of PASCAL VOC 2007 since it is the
category with the largest number of ESVM models (4690
models). We fix the rank L to 0.01×D = 45 where we
can achieve almost the identical performance to standard
ESVM evaluation and show in Figure 5, the computation
as the function of M ranging from 2000 to 4500 models,
for both the standard ESVM evaluation and the low-rank
approximation. As we can see, as we increase M , the com-
putation of the standard ESVM grows much faster than that
of BSM, which is consistent with our theoretical analysis
in Section 2.4. Note that the speed-up of BSM over the
standard ESVM is not as large as the theoretical analy-
sis because in practice, the actual computation time con-
sists of both feature computation and model evaluation. We
can achieve around 3 folds speed-up with considering all
the pre- and post- processing with un-optimized MATLAB
code.

Finally, as we noted earlier, our aim is to reduce the
complexity/number of the “model-window” pairs prior to
computing the scores, not to optimize the matrix product
computation itself. As a result, other approaches that at-
tempt to reduce computation by optimizing the computa-
tions involved such as GPU implementations, fast matrix
operations, or quantization can be readily incorporated in
the BSM implementation to achieve further speed-up.

3.2. Image Classification
For the image classification task, we use the ImageNet

ILSVRC 2010 dataset which is the only version of ILSVRC
that has released both its testing images and the ground truth
labels for them6. To best use the existing pipeline, we adopt
the state-of-the-art feature generated by Krizhevsky et al.’s
network [15] and trained our own 1000-way softmax regres-
sor W on ILSVRC 2010 training set. We use U and V
learned from both SVD and BSM, as we described in Sec-

6Note that both the number of categories and images are almost identi-
cal to the more recent ILSVRC 2012.



tion 2.6, to obtain an approximation ofR as R̃7. The perfor-
mance of the standard softmax classifierW , and the approx-
imations with SVD and BSM is shown in Table 1. First, as
we increase the rank L, we get better and better classifica-
tion performance as we expected. Also, our method could
achieve performance that is not only much better than that
of the SVD baseline, but also better than the original soft-
max regression classifier when using only around 4% rank
relative to D. We suspect this is because we reduce the
overfitting by projecting down the feature dimension.
L/D 0.005 0.01 0.015 0.02 0.04 0.06 0.08 0.1 SOFTMAX
SVD 0.191 0.366 0.470 0.534 0.635 0.672 0.690 0.703 0.728BSM 0.444 0.634 0.690 0.709 0.735 0.745 0.750 0.750

Table 1: Comparison of the classification accuracy between
SVD and BSM, as well as the standard softmax regression
classifier. The results are shown with different L/D, which
is the ratio between L, the constrained rank, and D, the
dimension of the feature (In this case 4096).

4. Conclusion
In this paper, we have investigated the problem of effi-

cient model evaluation with a bilinear separation model. By
optimizing an objective function which is data-dependent
and directly related to the prediction performance for the
target task, we are able to achieve the same or even bet-
ter performance for both object detection (PASCAL VOC
2007) and image classification (ImageNet ILSVRC 2010)
tasks with much less computation, i.e., more precisely, with
growth in computation much slower than the growth in the
number of models, which is consistent with our theoretical
analysis on computation efficiency.
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