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Abstract

We present an approach for object instance detection
that uses model recommendation to predict a subset of rele-
vant exemplar models for object detection based on an test-
ing image at runtime. An initial subset of randomly selected
exemplar models, the probe set, is first applied to the test-
ing image, and its responses are used, in conjunction with
a rating matrix, to predict the responses of all the exem-
plar models. The subset of exemplar models predicted to
score the highest is then applied to the testing image to gen-
erate the final detections. This method enables scaling up
the number of exemplar models to capture large object ap-
pearance variability, while maintaining computational effi-
ciency. We present a novel max-selection scheme that al-
lows us to build the rating matrix in a weakly-supervised
fashion, allowing us to leverage large amounts of data eas-
ily. In addition to computational efficiency, we present ex-
perimental results which demonstrate that this model rec-
ommendation approach can outperform a baseline in which
all the exemplar models are evaluated on the testing image.

1. Introduction

Detecting an object instance is challenging because of
the large variations in the visual world. If we think of each
image as a data point, the variations among images due to
viewpoint, deformation, illumination, scale, as well as intra-
class variation produce a large image space. Conceptually,
recognizing an object in an image is to partition the image
space into different categories or instances. Given a lim-
ited number of training images, a common approach for ob-
ject detection is to train a single global model that captures
the entire variance within an object category [3]. However,
training an effective global model is hard both in theory
and practice due to the aforementioned variations. Sub-

sequent research has presented piecewise approaches that
break down the task of capturing the variation by using a
collection of models [7, 2, 11]; these approaches have been
demonstrated to capture a greater degree of variability but
require larger training datasets. With the increasing access
to larger datasets, methods that take this divide-and-conquer
approach to the limit by training one detector per training
sample have also been proposed. This exemplar-based ap-
proach lets the data speak for itself [18, 21, 19, 13], with
each exemplar model representing a local region in the im-
age space. This approach is particularly well suited for ob-
ject instance detection rather than broader category detec-
tion problem. We present object instance detection as our
application in this paper.

A critical issue of exemplar-based approaches is the abil-
ity to scale up the number of models (and therefore the
degree of variability that can be captured), while keeping
the computation tractable. Achieving this goal is not triv-
ial as increasing the number of exemplar models directly
leads to the increase in computation; clustering or aver-
aging the exemplar-models negates the data-driven appeal
of the approach. A common class of approaches is to
share model parameters by clustering visually similar com-
ponents or discovering common dictionaries offline in the
training stage [5, 11, 23, 22]. There are some other works
addressing this scalability issue at runtime [24, 8, 9]. Gao
and Koller [9] suggest using a value-theoretic approach for
selecting classifiers at run-time. Each classifier response is
considered an observation that potentially holds informa-
tion about the classification task, and has a computational
cost associated with it. They balance classification gain and
computational cost to dynamically select classifiers. Cas-
cades of classifiers [24, 8] are another example of runtime
selection of classifiers. An instance is passed through a se-
ries of classifiers, and at each point in the process a decision
is made based on the previous responses whether to apply
another classifier or make a prediction.
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The runtime model selection is appealing since the mod-
els selected for each particular testing image could be dif-
ferent according to partial information we obtain at run-
time. This input-sensitive approach helps us to make bet-
ter decision on what models would be appropriate for each
testing image, in contrast to the offline approaches which
do not distinguish between two different testing images.
The cascaded method in [24] builds the cascade in a input-
insensitive manner whereas the approaches described in [9]
select models in a input-sensitive way. However, their ap-
plication scenario and approach is very different from ours.
Note that they do inference at every step with the computa-
tion scales cubically with the number of evaluated models.

Our idea in this paper is to exploit the correlation among
models to do runtime model recommendation in a input-
sensitive manner. The key insight about exemplar models
is that the models of an object category/instance are not un-
organized or uncorrelated. Instead, there are strong correla-
tion patterns exist among them. In this paper, rather than
looking for correlations among models directly in image
space, we look for correlations among models by check-
ing their responses on images (see Figure 2a). Knowing
the structure among models enables us to make predictions
based on the responses of any exemplar model given the re-
sponses of other exemplar models. Therefore, it is possible
to apply a small set of exemplar models (which we refer to
as probes) on a testing image and to predict the responses of
all the models. The exemplar models that are predicted to
score highly on the testing image are then recommended for
detection on the image. If the prediction can be computed
efficiently, this saves significant computation as it can dras-
tically reduce the number of models that we need to apply
at run-time. Even when scaled up to a large number of mod-
els, it is still possible to detect objects in a tractable manner.
Specifically, we use model recommendation [15, 20] to ex-
ploit the structure in the responses of different models on
different images. Empirically we observe that model rec-
ommendation often outperforms the direct approach of ap-
plying all the exemplar models, which is surprising at first
glance. This seemingly counter-intuitive result comes from
the fact that model recommendation leverages information
from different model responses and makes its prediction on
which model responses would be likely to fire, i.e., exceed a
fixed threshold. This helps suppress false positive detection,
as can be seen in Figure 1.

To the best of our knowledge, this paper is the first to do
runtime model recommendation for object instance detec-
tion task.
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Figure 1: The first row shows the testing images, the second and third
rows are responses generated by applying all the models and just mod-
els from model recommendation, respectively. In both cases, the color
of each pixel encodes the maximum response of detectors at those pixels.
The dotted boxes show the detection with the maximum score obtained by
applying all the models; the solid boxes are the detections from the recom-
mended models using 20% probes. The left example shows that the car is
detected at wrong location by taking the maximum over all the detectors,
whereas the correct location is recovered by using only 20% of the mod-
els as probes in our recommendation setting. Similarly, The right example
shows that using all detectors, the object is detected with the wrong scale,
and the recommended models give us correct scale of the detection.

2. Approach
2.1. Exemplar Models for Detection

Exemplar methods for object detection use an ensemble
of models, each member of which is applied to an test-
ing image using a sliding-window. Each exemplar model
wi, i = 1, 2, 3, ...M is thus used to capture one data point in
the image space belonging to this object category/instance.
The response fi(x) of an exemplar model wi on image
patch x is given by:

fi(x) = wT
i φ(x). (1)

We use SM to denote the entire set of exemplar models and
φ(x) to denote the feature representation for image patch
x. To use all exemplar models in an ensemble, we typi-
cally run all the models {wi|∀i∈SM} on the testing image
in a sliding-window manner by evaluating Eq. 1 at every
possible location and scale in the image feature pyramid.
A threshold is picked to identify whether or not a response



has fired and is thus to be considered a detection. Given a
collection of detection results from different local models,
Non-Maximum Suppression is then applied to remove the
redundancy and yield the final detection results. Different
kinds of exemplar models could be used in this framework,
we choose Exemplar SVM (ESVM) because of its discrim-
inative power [19].

Specifically, in Exemplar SVM (ESVM), the model pa-
rameter wi is learned using large-margin learning and hard-
negative mining technique [7], which gives the model more
discriminative power than many other template-based meth-
ods [12, 10]. The feature representation used in ESVM is
a HOG template which captures the gradient information
while providing invariance to small changes in raw pixels.
In the large-margin formulation, the positive sample is the
HOG vector of a single image patch, the exemplar. The
negative samples are image patches mined from a large col-
lection of images which do not contain this object. Thus our
SVM objective function is:

min
w,b

1

2
||w||2 + C1l(w, b, φ(xE)) + C2

∑
x∈NE

l(w, b,−φ(x)),

(2)
where xE is the exemplar vector, NE is the set of negative
samples while C1 and C2 are regularization parameters.

2.2. Model Recommendation

Our approach is to use Collaborative filtering (CF), a
set of techniques for filtering information from various data
sources, originally designed for predicting how a new cus-
tomer would rate products based on a large collection of rat-
ings from prior customers. This approach has been demon-
strated to work well in recommending models for action
recognition [20]. In this approach, we treat the response
of model i on image j as a rating Rij and we collect all the
ratings in a ratings matrix R. Using matrix factorization
such as Singular Value Decomposition (SVD), we can dis-
cover the latent factors which characterize both the models
and the images. The approach based on SVD factorization
is termed factor-based collaborative filtering in the context
of recommendation systems [14]. However, many different
approaches can be used to decompose R in order to predict
the rating vectors from a small set of probes (see [15] for a
survey). Then given a new testing image, we evaluate the
response of a small probe set of P models on the testing im-
age, yielding a P-dimensional vector of probe ratings Rp.
By using the matrix decomposition, the ratings on all the
other models is then estimated. The key feature of this class
of approach is that, by exploiting the correlations across the
models in the ratings matrix, it is possible to evaluate only
a small subset of probe models. In fact, it is possible to
get better performance than by evaluating all of the models,
again because a large body of prior experience in applying
models to images is used.

In the original work of [20] the idea was to replace the
standard approach of training on a new task (the new “cus-
tomer”) by using a large dataset, with the new approach of
“guessing” which models would be appropriate for the new
task based on prior experience rating many different mod-
els on many different tasks (the product ratings of prior cus-
tomers). Our goal is different from [20] in that we investi-
gate the problem of recommending models to detect objects
in a single image at test time, whereas they aim at improv-
ing the training performance. In order to illustrate it on a
simple example, we refer to the same task thoughout this
section (Figure 2): The models are ESVMs generated from
views of an object sampled in a circle. Similarly, testing
images different from the training images are also sampled
from the same circle. This setup allows us to produce mean-
ingful displays of the ratings matrix and the latent factors.

Ratings Matrix: In order to use collaborative filtering,
we need to pre-compute and store a ratings matrix R (also
called rating store in [20]) which contains responses of the
different models evaluated on different images. Let M be
the total number of models and N be the total number of
image samples, we evaluate all M models on N samples
and get a rating matrix R using a max operation:

Rij = max
x∈Ij

fi(x) = max
x∈Ij

wT
i φ(x), (3)

where x is an image patch in image Ij . Rij is set to be
the maximum response of all patches of Ij evaluated by
model wi. The max operation provides information about
the most confident response and thus is robust to noise in
model responses. For illustration, the collaborative matri-
ces constructed using max operation and average operation
(which is to replace the max in equation (3) with mean) are
shown in Figure 2b and 2c, respectively. Both the models
and the images are ordered according to view angles rang-
ing from 0 to 2π. It can be seen that max operation gives
us a clear pattern where models have higher responses on
images with closer view angles. By contrast, the average
seems to be dominated by noise and cannot produce mean-
ingful patterns. This method of using the max does not
require labeled bounding boxes in our training data. We
merely need to ensure that images used for constructing the
rating matrix contain the target object instance. Thus we can
exploit a large database of weakly-labeled images (frame
level supervision) for this task.

Baseline Estimates: As an analogy to the imbalance
in popularities of different products, different models have
different intrinsic popularities which means that some mod-
els tend to have higher responses than others consistently.
This imbalance also applies to different images. To remove
the effects of such imbalances, we need to estimate a base-
line for different models and images from the raw rating
matrix R to make values in the matrix comparable. In [14],
a simple additive model is proposed to represent each value



model index

m
od

el
 in

de
x

Correlation among models

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

(a) Correlation among models

image index

m
od

el
 in

de
x

Collaborative Matrix by Max Operation

50 100 150 200 250 300 350 400

20

40

60

80

100

120

140

(b) Max Operation

image index

m
od

el
 in

de
x

Collaborative Matrix by Avg Operation

50 100 150 200 250 300 350 400

20

40

60

80

100

120

140

(c) Average Operation

0 50 100 150
−1

−0.5

0

0.5

1

model index

fir
st

 la
te

nt
 fa

ct
or

1

21

41

61

81

101 121

141

(1) (21) (41) (61) (81) (101) (121) (141)

(d) Illustration of latent factor

Figure 2: (a) Correlations across the models for the multi-view toy dataset, there are in total 1440 models from 10 sequences. The block diagonal
structures refer to the high linear correlations among responses of close-view models; (b) Matrix R in which the pattern of color-coded elements Rij

reveals the strong correlations across models and images when the max operation is used to compute the ratings; (c) The average operation does not reflect
the strong correlations (d) Value of the first latent factor obtained after factorizing R (red plot) for each training image ( a few of the training images are
shown at the top of the plot), showing that the latent factor does correspond to the viewing angle.

of matrix R as:

Rij = R̃ij + µ+ αi + βj , (4)

where µ is the global baseline of the matrix R, αi is the
baseline response for model i, and βj is the baseline re-
sponse for image j. Baselines µ, αi and βj can be solved
as a least square problem by minimizing the square error∑

ij ||Rij − µ − αi − βj ||2. R̃ij is called residual and we
aim at predicting this residual using collaborative filtering.

Factorization: With rating matrix R̃, CF discovers the
structure in the matrix by transforming responses from both
models and images into a latent factor space. The latent
factors try to explain the elements of R̃ by characterizing
the tasks and models in a shared space. For example, there
might be a dimension in the latent factor space characteriz-
ing the angle of viewpoint whereas another dimension char-
acterizes the illumination condition. The latent factors are
estimated by factorizing the rating matrix R̃: R̃ = ΘTΩ,
where each column of Θ∈RK×M is the latent feature rep-
resentation for each model, and K is the number of latent
factors. Similarly, each column of Ω∈RK×N is the latent
representation for each image. The most direct way to solve

the above factorization problem is to use Singular Value De-
composition: R̃ = UDVT . We can get the desired factor-
ization by setting ΘT = U′D′ and Ω = V′T (U′ is the
first K columns of U, D′ is the upper-left square matrix
with dimension K from D and V′ is the first K columns
of V). The latent factors obtained through SVD give us
strong semantic patterns for both models and images. As
shown in Figure 2d, the curve is the magnitude of the first
latent factor, which clearly corresponds to the view angle of
exemplars.

Prediction: Given an testing image I , we select a set
of probes Sp with size |Sp| and apply models in Sp on I
to get a probe response vector p∈R|Sp|. p is then normal-
ized as p̃ = p − µI − αp − βp, where αp = {αi|i∈Sp},
βp = 1

|Sp|
∑

j(pj − µ). We recover the latent feature rep-
resentation of I from p̃ by:

ΘT
p ωp = p̃, (5)

where Θp contains corresponding columns extracted from
Θ which includes representation of all the models in latent
factor space. Multiplying ωp with Θ we get the residual
prediction r̃p, which we convert to predicted ratings by ap-



plying the baseline transformation: rp = r̃p+µI+α+βp.
Once the model responses on the testing image have been
predicted using the above method, ideally we can pick the
model that has the highest predicted response to run on the
testing image and get detection results. However, it is hard
for collaborative filtering to precisely locate the best model.
Instead, we choose the top K models to form a candidate
set and apply models in this set on the testing image1.

3. Results
Since we are aiming at recommending models for object

instance detection. We present experiments on two object
instance datasets as Multi-View Toy and RGBD datasets,
the first one is a dataset we collect with multiple views and
illumination conditions for a particular toy object whereas
the second one is a commonly used object instance dataset
[16, 17, 1]. We also demonstrate the capability of our ap-
proach tackling larger intra-variance by presenting a set of
results on PASCAL Car dataset which comprises different
car instances.

3.1. Multi-View Toy Dataset

In this dataset, we collected image sequences by fixing
the camera at 5 different arbitrarily chosen height and dis-
tances from the object instance, and we vary the illumina-
tion by turning on/off a lamp above it. The object is set on
a turnable table which enables us to collect images of the
toy from different views. As a result, we get 10 sequences
with lengths ranging from 1006 to 1330 frames. For ESVM
training, we sample the training data from each sequence at
a rate of 2.5 degree/image, which leads to 144 exemplars
per sequence and 1440 exemplars total. The rating matrix
is computed by evaluating all 1440 models on another 4320
images sampled from these 10 sequences (432 images per
sequence). For testing, we collect 2 sequences (with a dif-
ferent height and distance from the training samples, one
with lamp illumination, the other without it) with slight clut-
ter and occlusions. In total, there are 1000 images extracted
from these two sequences for testing. Typical training and
testing images can be seen in Figure 2d. Note that, in this
setting, a naive approach would either apply all 1440 de-
tectors to the testing image or would reduce the number of
detectors at training time. The former would lead to high
computational cost, whereas the latter would select a one-
size-fits-all set of detectors, ignoring the testing image. In
contrast, we show in this experiment that we can use a small
set of detectors selected in an input-sensitive manner and
still maintain detection accuracy.

To measure the performance of detections, we follow
the standard scoring method used in the PASCAL object
detection challenge [6] in which all the detections are as-

1In all our experiments, we set K to 20.

signed their intersection-over-union scores between esti-
mated bounding boxes and ground-truth bounding boxes.
All the detections with overlapping scores higher than 0.7
are considered true positive detection, instead of 0.5 which
is used for evaluating performance on PASCAL dataset. We
report the average precision (AP), which is an approxima-
tion of the area under the precision-recall curve, with re-
gard to the number of models used as probes. For compari-
son, the baseline is to randomly sample a model subset with
the same number of models as in the probe set and directly
apply them on testing images. To show how the detection
performance approaches the standard testing procedure, we
also plot out the performance obtained by applying all the
models on the testing image. The performance of object de-
tection using model recommendation is shown in Figure 6a.
As shown in the figure, it is possible to achieve detection
performance comparable to the performance of applying all
the models (green line) with model recommendation (blue
line) using a small fraction (5%) of models. The reason
is that the detectors are dynamically selected by combin-
ing the prior experience from the ratings matrix with the
information from the testing image. The performance curve
shown in Figure 6a is the average of 20 rounds.

3.2. RGB-D Object Dataset

The RGB-D Object Dataset is a large data collection
consists of 300 daily objects classified into 51 categories
[16]. One notable difference between this dataset and clas-
sical object datasets like Caltech 101 and ImageNet is that
objects in this dataset are labeled on two different levels:
category level and instance level. For example, for the soda
can category, the ground-truth labels such as Pepsi Can and
Mountain Dew Can are provided in the annotations. In our
experiment, we focus on instance-level detection. Specifi-
cally, we pick one instance per category2 to test our model
recommendation method. Since the consecutive frames are
very similar, we have sampled images every 5 frames as
training data for ESVMs which results in 111, 127, 128
and 118 models of different views for coffee mug, soda
can, cap, and bowl, respectively. The collaborative matri-
ces for different instances are then computed by evaluating
all the models belonging to the instance on uncropped im-
ages for the corresponding category (i.e., we have model i
evaluated on all instances from the category to which model
i belongs). The precision-recall curves for these four in-
stances are reported in Figure 4. It can be seen that the
exemplar models produce robust results using only RGB
images without depth information. As shown in Figure
6c,6e,6d,6f, for different object instance, the model recom-
mendation method requires different probe ratios to achieve
a performance comparable to the performance of applying

2The index of these four instances are coffee mug #1, soda can #1, cap
#4 and bowl #4.



(a) RGBD Dataset

(b) PASCAL Car

Figure 3: Figure 3a and 3b show results on the RGBD and PASCAL
Car Datasets, respectively. The first two rows show two examples of suc-
cessful detections. The next two rows correspond to two failed cases. The
first failed case corresponds to the case where both exhaustive matching
(applying all the models) and model recommendation fails whereas the
second one is the case where model recommendation fails but exhaustive
matching gives a successful detection.

all the models. This is because different instances have dif-
ferent variations when inspected from different views and
thus make the correlation among models for views vary
from instance to instance. However, it is always possible
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Figure 4: Precision-recall curve for four selected instances in RGB-D
Object Dataset.

for the recommendation system to reach good performance
using a relatively small number of probes.

In Figure 5, the x-axis is the ratio of probes and the y-
axis is the proportion of testing images for which model
recommendation successfully recommended the highest re-
sponse model in the candidate set. For clarity of compari-
son, we also plot out the baseline, which is a straight line
going through origin and (1, 1). This result shows that the
model recommendation gives us accurate recommendation
with a small number of probes. Note that for the bowl in-
stance, the model recommendation system actually outper-
forms the result of applying all the models. The reason for
this is that model recommendation filters out many false
positives when responses among models have strong cor-
relations with each other.

3.3. PASCAL2007 Car Dataset

Experiments on Multiview Toy Dataset and RGB-D Ob-
ject Dataset demonstrate the capability of model recom-
mendation for object instance detection. We also conduct
experiments on PASCAL dataset to see whether our method
can generalize to the case of larger variations among mod-
els. We use the car category in PASCAL 2007 trainval set
which includes 1250 instances for different cars from dif-
ferent views with clutter and occlusions as our exemplars.
As can be seen from Figure 1, the PASCAL Car dataset has
much larger variation among models than the datasets we
use in previous experiments. The rating matrix is computed
by evaluating all the exemplar models on images of the Mo-
tor vehicle, Automotive vehicle entry from the large-scale
dataset Imagenet. This set includes 1748 images with each
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Figure 5: The x-axis is the ratio of probes and the y-axis is the pro-
portion of testing images for which model recommendation successfully
recommend the highest-response-model into the candidate set.

containing at least one car instance[4]. Note that we do not
use use any object-level annotation like bounding boxes in
the process generating the rating matrix. The testing im-
ages are taken from the PASCAL 2007 test set which con-
tains 4952 images. The result of model recommendation is
shown in Figure 6b. For average precision, we report the
raw detection results without adding the steps of score cali-
bration and context rescoring [19] for both the baseline and
our method. We demonstrate that, even with larger varia-
tions among models, model recommendation is able to sup-
press false positives and thus provide better performance
using a comparatively small number of probes.

Experiments on these three datasets consistently demon-
strate the capability of model recommendation for object
detection. Model recommendation provides a way of re-
ducing the number of models applied to images and thus en-
ables the model set to scale up when detecting objects using
exemplar models. When model responses have strong linear
correlations, it is even possible for model recommendation
to yield better performance than applying all the models be-
cause it filters out false positive detections.

4. Discussion
In this paper, we explore the use of model recommenda-

tion for exemplar-based object detection. A subset of the
exemplar models that we refer to as probe set is applied to
the testing image, and the responses of the probes are used
to predict responses of all the models on the testing image.
A recommended set of models with the highest estimated
responses is then applied to the testing image to obtain the
final detections. The key to this approach is to combine off-
line information about the responses of a large pool of de-
tectors on a large set of images with input-sensitive response

of a few detectors. With such an approach, it is possible to
scale up the number of exemplar models while keeping the
computation at a tractable level. In addition to tractabil-
ity, we observe that for some tasks it is possible for model
recommendation to outperform the results of applying all
the models. By leveraging information from responses of
different models, model recommendation method is able to
contextually predict which models are likely to fire on the
testing image and thus helps us to avoid false positive detec-
tions. A future direction of research is to integrate the use
of meta-information, such as image-tags or scene priors, to
condition the recommendation.
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