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Abstract

We propose a very intuitive and simple approximation
for the conventional spectral clustering methods. It effec-
tively alleviates the computational burden of spectral clus-
tering - reducing the time complexity from O(n3) to O(n2)
- while capable of gaining better performance in our ex-
periments. Specifically, by involving a more realistic and
effective distance and the “k-means duality” property, our
algorithm can handle datasets with complex cluster shapes,
multi-scale clusters and noise. We also show its superiority
in a series of its real applications on tasks including digit
clustering as well as image segmentation.

1. Introduction
Data clustering plays a key role in many applications.

Much effort has been devoted to this research [7, 10, 9, 6,
13]. A fundamental principle (assumption) that guides the
design of a clustering algorithm is:

Consistency. Data within the same cluster are close to each
other, while data in different clusters are relatively far away.

According to this principle, the hierarchy approach be-
gins with each sample trivially being a cluster, and iterative-
ly agglomerate the closest pairs of clusters. Such technique
completely depends on local data structure of data with-
out global optimization, thus it is prone to errors caused by
multi-scale clusters [13]. Besides consistency, early meth-
ods such as k-means and EM assume relatively simple dis-
tribution shapes with Euclidean / Mahananobis distances.
These methods, however, do not perform well on data with
manifold or irregularly shaped clusters.

Spectral clustering methods [9, 13, 10] consider that
clusters in a dataset can have more complex shapes than
compact sample clouds. To overcome problems such as

∗indicates equal contribution.

multi-scale clusters in [9], self-tuning spectral clustering
[13] further considers local scale of data and the structure of
the eigenvectors. Impressive results have been demonstrat-
ed and it is regarded as one of the most promising clustering
techniques [12]. However spectral clustering often suffers
from the scalability problem due to large affinity matrix and
O(n3) computational complexity with eigendecompostion.
Therefore recent trend has been addressing the scalability
problem [16, 18, 19, 21].

Alternatively, our work cast a much more intuitive and
simpler perspective into this problem. Despite being more
effective in finding clusters [18], Eigenproblem needs to
be solved in most spectral clustering methods. We show
that with a reasonable mapping and the property called “k-
means duality”, no eigendecomposition is needed and a
simple k-means is able to produce results comparable to
or even better than many spectral clustering methods. In
a sense, our work can also be regarded as an approximate
spectral clustering method. It is able to tackle data with
clusters of complex shapes and scales. The correspond-
ing complexity of our algorithm is O(n2)1, compared with
O(n3) in many spectral algorithms. The philosophy in this
paper share commonality with [3] where spectral clustering
is unified to the kernel k-means framework. Yet methods in
[3] still need to solve the eigenproblem.

Our key contribution in this paper lies in the formula-
tion which simultaneously offers more efficiency, straight-
forwardness as well as flexibility. In terms of efficiency,
our work avoids the problem of taking eigendecomposition.
In terms of straightforwardness, the objective of the pro-
posed method avoids discrete-to-continuous relaxations in
many methods which sometimes can lead to undesired con-
sequences, such as over-segmentations in the middle of very
smooth regions. In terms of flexibility, the simple formula-
tion allows many convenient extensions. For example, we
can easily incorporate the Potts model in the k-means for

1For the detailed algorithm complexity analysis, the readers please
kindly refer to Appendix D in supplementary material.
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Figure 1. (a) A two-moon dataset used to demonstrate the transi-
tive distance, where samples of one cluster are denoted by circles
and samples of another cluster are denoted by dots. (b) Maps of
transitive distance matrices with different orders

image segmentation. Our experiment demonstrates the su-
perior performance of the method.

We believe the proposed formulation can offer scalability
as well. Our work is totally compatible with the framework
of [16], and could potentially incorporate many scalable
schemes on k-means, such as incremental k-means which
is both even more time and memory saving.

2. The transitive distance
We first show how to obtain a more reasonable metric

from a traditional metric where the triangle inequality holds.
In Fig. 1(a), the Euclidean distance between intra-cluster
samples xp and xq is larger than that between inter-cluster
samples xp and xs. A more reasonable metric would give
a closer relationship between xp and xq than xp and xs. A
common method is to create a non-linear mapping

ϕ : V ⊂ Rl 7→ V ′ ⊂ Rs, (1)

such that any two clusters in Rs can be split linearly, known
as the “kernel trick”. This process, however, is often com-
plicated and time-consuming. We want to have a non-
eigen method that can achieve similar nonlinear kernel map-
ping. Intuitively, it is the inter-connecting samples forming
a manifold “path” that indicates strong intra-cluster correla-
tion between xp and xq . Suppose each such sample is called
a “messenger”. We can define a distance through k of these
messengers. Let P = xu1xu2 ...xuk

be a path with k ver-
tices, where xu1 = xp and xuk

= xq . The way a metric
closer than the Euclidean distance between xp and xq with
P can be formulated as

DP(xp, xq) = max
xui

,xui+1
∈P

1≤i≤k−1

{d(xui , xui+1)}. (2)

An example is shown in Fig. 1(a), where the path P con-
necting xp, xq and the path Q connecting xp, xs are given.

In this case, DP(xp, xq) = d(xu, xv) is smaller than the
inter-cluster gap. Given this intuition, the transitive distance
between any two samples can be defined as follows:

Definition 1. Given the Euclidean distance d(·, ·), the de-
rived transitive distance between samples xp, xq ∈ V with
order k is

Dk(xp, xq) = min
P∈Pk

max
e∈P
{d(e)}, (3)

where Pk is the set of paths connecting xp and xq, each

such path is composed of at most k vertices, e
def
= (xi, xj),

and d(e)
def
= d(xi, xj).

The transitive distance matrices for the dataset in Fig.
1(a) with orders from 1 to 6 are shown in Fig. 1(b). As
k becomes larger, the discriminative ability increases. For
simplicity, we denote Dn with D when k = n, where n is
the number of samples.

The concept of “transitive distance” is not new. Transi-
tive closure is used [4] for protein interaction module de-
tection with cliques. For the tractability of problem, the
method only considers paths up to order 3. This is often not
sufficient to model the intrinsic structure as it loses much of
the connectivity resolution. The algorithm complexity re-
mains as high asO(n3) where n is the total number of sam-
ples. The work in [1] adopted transitive distance to perform
texture segmentation and edge grouping but with a bottom-
up clustering framework. [2] further generalized it to a Mer-
cer kernel, using Kernel PCA and k-means for clustering.
Therefore a large scale eigen-analysis is still needed. We
revisit this problem to study a way of using its strength to
formulate a fast, intuitive yet effective top-down clustering.
More importantly, there are a set of nice theories motivating
and justifying the study rather than heuristically choosing a
simple method.

Our work also shows close relation to minimum span-
ning tree (MST) based clustering, efficient graph-based im-
age segmentation (EGS) [15], graphical mode seeking [14]
and the normalized tree partition (NTP) [17]. We will give
more discussion in Section 5.

Notice that although we use d(·, ·) to denote the Eu-
clidean distance in the previous discussion, we can replace
d(·, ·) with any other meaningful distance (metric). There-
fore, d(·, ·) is used to denote any distance in the following.
This further extends our work to scenarios where better sim-
ilarity metrics can be easily incorporated.

3. Kernel trick by the transitive distance
The transitive distance is an ultrametric, as is proved in

[4]. We show that such ultrametric distance well reflects the
relationship among data samples and a kernel mapping with
a promising property can be obtained. First we introduce a
lemma from [8] and [5].



Figure 2. Mapping 50 data samples in V ⊂ R2 to V ′ ⊂ R49.

Lemma 1. Every finite ultrametric space consisting of n
distinct points can be isometrically embedded into an n− 1
dimensional Euclidean space.

With Lemma 1, we have the mapping2

ϕ : (V ⊂ Rl, D) 7→ (V ′ ⊂ Rs, d′), (4)

where ϕ(xi) = x′
i ∈ V ′, s = n − 1, and n is the num-

ber of points in a set V . We also have d′(ϕ(xi), ϕ(xj)) =
D(xi, xj), where d′(·, ·) is the Euclidean distance in Rs.

Definition 2. A labeling scheme {(xi, li)} of a dataset
V = {xi|i = 1, 2, ..., n}, where li is the cluster label
of xi, is called consistent with some distance d(·, ·) if the
following conditions hold: for any y /∈ C and any par-
tition C = C1 ∪ C2, we have d(C1, C2) < d(y, C),

where C ⊂ V is some cluster, y ∈ V , d(C1, C2)
def
=

minxi∈C1,xj∈C2 d(xi, xj) is the distance between the two

sets C1 and C2, and d(y, C)
def
= minx∈C d(y, x) is the dis-

tance between a point y and the set C.

Theorem 1. If a labeling scheme of a dataset V = {xi|i =
1, 2, ..., n}, is consistent with a distance d(·, ·), then given
the derived transitive distance D and the embedding ϕ :
(V,D) 7→ (V ′, d′), the convex hulls of the images of the
clusters in V ′ do not intersect with each other.

The proof of Theorem 1 can be found in Appendix A
in the supplementary material. An example is illustrated in
Fig. 2. A dataset V with 50 points in R2 is embedded into
R49, where the convex hulls of the two clusters do not inter-
sect. We can see the embedding ϕ is a desirable mapping.

The underlying intuition regarding Theorem 1 is that
clustering on V ′ can be much easier than clustering V .
While performing k-means on V ′ seems to be a favorable
choice, we only have the distance matrix E′ = [d′ij ] =
[Dij ] of V ′, instead of the absolute coordinates of x′

i ∈ V ′.
We will show in the following section how we can circum-
vent this problem using the k-means duality, which leads to
a novel clustering algorithm in Section 5.

2We use d(·, ·) to denote any traditional distance metric in V and d(·, ·)
the Euclidean distance in V ′.

4. The k-means duality
Let E = [dij ] be the distance matrix obtained from a

dataset V = {xi|i = 1, 2, ..., n}3. From E, we can derive
a new set Z = {zi|i = 1, 2, ..., n}, with zi ∈ Rn being the
ith row of E. We have the following property, called the
duality of the k-means algorithm.

Property 1. (K-Means Duality): The clustering result ob-
tained by the k-means algorithm on Z is very similar to
that obtained on V if the clusters in V are hyperellipsoid-
shaped.

4.1. A matrix perturbation interpretation

The matrix perturbation theory [11] can be used to ex-
plain this observation. We begin with the following distance
matrix

Ê =


E1 · · · · · · · · ·
· · · E2 · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · Ek


} n1 rows
} n2 rows

} nk rows

(5)

where data within the same cluster are consecutively in-
dexed. In the ideal case, Ei = 0, 1 ≤ i ≤ k, represents the
distance matrix within the ith cluster, n1+n2+...+nk = n,
and k denotes the number of clusters. Let Ẑ = {ẑi|i =
1, 2, ..., n} with ẑi being the ith row of Ê. ẑi ≈ ẑj if i, j
belong to the same cluster. And d(ẑi, ẑk)≫ d(ẑi, ẑj) if k, i
belong to different clusters. The distance relationship in the
original dataset is preserved completely in Ẑ and a proper-
ly initialized k-means algorithm on the original dataset will
give the same result as that on Ẑ.

Lemma 2. If the labeling scheme of a dataset is consistent
with the transitive distance, all the samples with the same
cluster label are locally connected4 by the constructed MST
of the whole dataset.

Lemma 3. If the labeling scheme of a dataset is consisten-
t, the transitive distances between any sample in the same
cluster and a sample from another cluster are the same.

The proofs of Lemma 2 and 3 are omitted here and can
be found in Appendix C. Lemma 3 is very useful. Intuitive-
ly, this lemma states when we consider clustering the rows
of Z, the difference between any two co-cluster rows on-
ly comes from Ei, since all elements in other columns will
be exactly the same. The difference from Ei by definition
is also tiny. This from one perspective indicates why the
property of k-means duality widely exists.

3With a slight abuse of notation, the dataset V in this section does not
necessarily represent the original space solely. It can also represent the
embedded space where the pair-wise sample Euclidean distance is charac-
terized by the distance matrix Z.

4By “locally connected” we mean the path connecting the two samples
on the MST only consists of other samples that are also from the same
cluster



Theorem 2. The optimal k-means clustering on Z is the
same as that on V , if any intra-cluster transitive distance is
less than half of any inter-cluster transitive distance.

We can prove under such situations the following in-
equality holds: d(zi, zk) > d(zi, zj) where i, j belong to
the same cluster and k, i different clusters. And such in-
equality leads to the theorem. The assumption here seem-
s to be strong yet we have not considered two other fac-
tors: 1. The discriminative information (difference) from
inter-cluster transitive distances5 for zi and zk. 2. The
hyperellipsoid-shaped distribution. In general cases, this
problem is relaxed to the situation where a perturbation P
is added, i.e., E = Ê + P , with all diagonal elements of
P bring zero. The matrix perturbation theory [11] indicates
that the k-means clustering result on the dataset Z that is
derived from E is similar to that on Ẑ if P is not dominan-
t over Ê. Given Lemma 3 and the mentioned two factors,
the above property often holds when the intra-cluster transi-
tive distances are larger than half of the inter-cluster transi-
tive distances, or even when the labeling comes inconsisten-
t. The k-means clustering strategy also makes our method
considerably more robust than some other MST clustering
methods through weak edge cutting. For more details the
readers are recommended to refer to section 5.3 where the
consistency assumption is clearly violated.

4.2. Experimental verification

We conduct a large number of experiments on differ-
ent data sets to verify the above property. Most data sets
were randomly generated with multi-Gaussian distribution-
s. From more than 100 data sets where each set contains 200
samples, we compared the results obtained by the k-means
algorithms on original data sets V and their corresponding
sets Z. As a whole, the sample labeling difference is only
0.7%. One example is shown in Fig. 3, in which only one
sample is labeled differently by the two clustering methods.

We are now able to give a solution to the problem men-
tioned at the end of Section 3. From Theorem 1, we know
that a dataset V can be mapped to V ′ ⊂ Rn−1 where the
clustering is easier if the clusters with the original distance
are consistent in V . The problem we need to handle is that
in Rn−1 we only have the distance matrix instead of the co-
ordinates of the samples in V ′. Using the k-means duality
in this section, we can perform the clustering based on the
distance matrix by the k-means algorithm. Therefore, the
main ingredients for a new clustering algorithm are already
available.

5The intuition here is that the configuration of inter-cluster transitive
distances of zi and zk can be quite different, as opposed to the completely
identical configuration of zi and zj . (See Lemma 2)

(a) (b)

Figure 3. (a) Clustering result obtained by the k-means algorithm
on the dataset V . (b) Clustering result obtained by the k-means
algorithm on Z derived from the distance matrix of V . Only one
sample has different labelings from the two results.

5. A new clustering algorithm
In this section, we give a solution to the problem at the

end of Section 3, describe the corresponding algorithm and
give detailed analysis.

5.1. The proposed algorithm

Given a dataset V = {xi|i = 1, 2, ..., n}, our clustering
algorithm is described as follows.

Algorithm 1 Clustering Based on the Transitive Distance
and the k-means Duality

1: Construct a complete graph G = (V,E) where E =
[dij ]n×n is the distance matrix containing weights of
all edges with dij being the distance between xi, xj .

2: Compute the transitive distance matrix E′ = [d′ij ] =
[Dij ] based on G, where Dij is the order n transitive
distance between samples xi and xj .

3: Perform clustering on the dataset Z ′ = {z′i|i =
1, 2, ..., n} with z′i being the ith row of E′ by the k-
means algorithm and then assign the cluster label of z′i
to xi, i = 1, 2, ..., n.

In step 2, we need to compute the transitive distance with
order n between any two samples in V , or equivalently, to
find the transitive edge, which is defined below.

Definition 3. For a weighted complete graph G = (V,E)
and any two vertices xp, xq ∈ V , the transitive edge for
the pair xp and xq is an edge e = xu, xv, such that e lies
on a path connecting xp and xq and Dpq = D(xp, xq) =
d(xu, xv).

Because the number of paths between two samples is ex-
ponential in the total number of samples, the brutal search-
ing for the transitive distance between two samples is infea-
sible. It is necessary to design a faster algorithm to carry
out this task. Theorem 3 is proved for this purpose.

Theorem 3. Given a weighted complete graph G = (V,E)
with distinct weights, each transitive edge lies on the mini-
mum spanning tree G̃ = (V, Ẽ) of G.



For the proof of Theorem 3, please refer to Appendix
B in the supplementary material. The theorem suggests an
efficient algorithm to compute the transitive matrix E′ =
[d′ij ]n×n which is shown in Algorithm 2.

Algorithm 2 Computing the transitive distance matrix E′ =
[d′ij ]n×n

1: Build the minimum spanning tree G̃ = (V, Ẽ) from
G = (V,E).

2: Initialize a forest F ← G̃.
3: Repeat
4: For each tree T ∈ F do
5: Cut the edge with the largest weight wT and par-

tition T into T1 and T2.
6: For each pair (xi, xj), xi ∈ T1, xj ∈ T2 do
7: d′ij ← wT

8: End for
9: End for

10: Until each tree in F has only one vertex.

5.2. Relation to hierarchical clustering and EGS

Although MST is used in both methods, the motivations
are quite different. Our purpose is to generate a non-linear
embedding with which the k-means algorithm provides a
top-down optimization, whereas in hierarchical clustering,
each iteration only focuses on local structure. This leads to
significant differences. We carry out the proposed method
and hierarchical clustering on the same test data. Fig. 4
shows the clustered results by the two approaches.

EGS is essentially a method where the cuts on MST are
smartly chosen. Despite the fact that EGS is proved to be
“neither too coarse nor too fine”, the method still suffers
from over-merging at weak boundaries like other bottom-up
contour finding methods. Alternatively, our method focus-
es on modeling the intra-cluster similarity with top-down
information included, suffering less from this problem.

5.3. Relation to graphical mode seeking and NTP

Our method also shows close relationship to the graph-
ical mode seeking [14] and the normalized tree partition
[17]. Paper [14] uses an MST to model the intrinsic struc-
tures. Different from this work, [14] did not incorporate the
transitive distance information. Intuitively, such clustering
formulation is prone to over splitting in situations where a
cluster is diffusively distributed while the minimum inter-
cluster gaps between this cluster and other clusters are not
significant. Our method on the other hand share similar
characteristics with spectral clustering methods, which are
good at handling this situation. [13].

In [17], the authors also use tree structures to represent
the inherent data structure and the tree is partitioned k-way
by checking normalized cut scores. The spectral cluster-
ing formulation between our work and theirs, however, is

(a) (b)

Figure 4. (a) The minimum spanning tree and the clustering result
by our algorithm. (b) The minimum spanning tree and the cluster-
ing result by the hierarchical clustering. The dashed lines are the
cutting edges. The number of clusters is 3.

quite different. In a sense, [17] used a tree to significantly
reduce the space of possible cut configurations, while our
work does not have this limit.

6. Experiments
We apply our algorithm to a number of clustering prob-

lems. The results are compared with those by the k-means
algorithm, the spectral clustering algorithm (NJW) [9] and
the self-tuning spectral clustering algorithm [13]. For each
dataset, the NJW algorithm needs manually tuning of the
scale and the self-tuning algorithm needs to set the number
of nearest neighbors. We show the best clustering results
that are obtain by adjusting the parameters. The numbers of
clusters are all assumed to be known.

6.1. Synthetic datasets

Eight synthetic data sets are used in the experiments.
Bounded in a region (0, 1)× (0, 1), these data sets are with
complex cluster shapes, multi-scale clusters, and noise. The
clustering results are shown in Fig. 5. Note that the results
obtained by k-means are not given because it is obvious that
it cannot deal with these data sets.

In Fig. 5(a)-(c), all the three algorithms obtain the same
results. Fig. 5(d)-(f) and (g)-(i) show three data sets on
which the self-tuning algorithm gives different results from
the other two algorithms. The self-tuning algorithm fails
to cluster the data sets no matter how we tune its parame-
ter. Fig. 5(j) and (k) show two clustering results where the
dataset is with multi-scale clusters. The former is produced
by the NJW algorithm and the latter by the self-tuning and
our algorithms. To cluster the dataset in Fig. 5(l)-(n) is
a challenging task, where two relatively tightly connected
clusters are surrounded by uniformly distributed noise sam-
ples (the third cluster). Our algorithm obtains the more rea-
sonable result (Fig. 5(l)) than the results by another two
algorithms (Figs. 5(m) and (n)). On the synthetic dataset,
we can see that our algorithm performs similar to or even
better than the NJW and self-tuning spectral clustering.



Figure 5. Clustering results by our algorithm and the two spectral algorithms. (a)(b)(c) Results by the three algorithms. (d)(e)(f) Results by
the NJW algorithm and ours. (g)(h)(i) Results by the self-tuning algorithm. (j) Result by the NJW algorithm. (k) Result by the self-tuning
algorithm and ours. (l)(m)(n) Results by our algorithm, the NJW algorithm, and the self-tuning algorithm, respectively.

6.2. Datasets from the USPS database

There are 9298 handwriting digit images of size 16× 16
from “0” to “9” in the USPS database, from which we con-
struct ten data sets from this database. Each set has 1000
images selected randomly with two, three, or four clusters.
Each image has a 256-dimensional feature. Fig. 6 shows
the error rates of the four algorithms on these sets. The pa-
rameters for the NJW and self-tuning algorithms are tuned
to obtain the smallest error rates. These results show that as
a whole, our algorithm achieves the best performance.

6.3. Iris and Ionosphere datasets

We also test the algorithms on two commonly-used da-
ta sets, Iris and Ionosphere, from UCI machine learning
database. In Table 2 we show the error rates of our clus-
tering algorithm compared with k-means (KMS), NJW and
self-tuning. For the NJW and self-tuning algorithms, we
have to adjust their parameters (δ and N )6 to obtain the s-
mallest error rates, which are shown in the table. Our algo-

6We tried different δ from 0.01 to 0.1 with step 0.001 and 0.1 to 4 with
step 0.1, and different N from 2 to 30 with step 1.

Figure 6. The error rates of four algorithms on ten data sets con-
structed from the USPS database.

rithm results in the smallest error rates.

6.4. Image segmentation

We conduct segmentation experiments on the Berkeley
segmentation dataset. Segmentation is conducted on top of
superpixels obtained by the method in [22], with texton his-
tograms extracted from each superpixel and the χ2 distance



Table 1. Error rates of the four algorithms on Iris and Ionosphere
data sets

KMS NJW Self-Tuning Ours
Iris 0.11 0.09(δ = 0.4) 0.15(N = 5) 0.07
Iono 0.29 0.27(δ = 0.2) 0.30(N = 6) 0.15

modeling dissimilarity. We compare the results with nor-
malized cuts [10], self-tuning spectral clustering, EGS [14]
under the same superpixelization and dissimilarity setting.
Sparse affinity matrices were constructed on top of the dis-
similarity measure for the two spectral methods. We also
recommend readers compare these results with [23], where
the testing sequence and settings are very similar.

Other than qualitative evaluation, we conduct quantita-
tive evaluations. We compare our results to NTP [17], mul-
tiscale graph decomposition (MGD) [20] and probablistic
rand index label fusion (PRIF) [24] in terms of 1) Proba-
bilistic Rand Index (PRI), 2) Variation of Information (VoI),
3) Global Consistency Error (GCE), and 4) Boundary Dis-
placement Error (BDE). From the results we can see our
method generates comparable or even better results com-
pared with other major clustering methods. Note that [24]
is a method that is specifically optimized over PRI. The per-
formance gap between two methods is marginal. The result
has not yet included techniques that are actually very help-
ful to boost performance. A simple pre-clustering would
further increase every benchmark score over all baselines.

Having an intuitive clustering process endows much
more convenience on many direct extensions than eigende-
composition based methods. For example, we can extend
our method to the MRF k-means where the label configura-
tion is further penalized by the Potts model.

Table 2. Quantitative segmentation evaluation

PRI VoI GCE BDE
MGD 0.7559 2.4701 0.1925 15.10
NTP 0.7521 2.4954 0.2373 16.30
Ncut 0.7853 2.1031 0.1947 12.9703
PRIF 0.8006 − − −
Ours 0.7926 2.0871 0.1835 13.1707

7. Conclusion
In this paper, we have built a connection between the

transitive distance and the kernel technique for data cluster-
ing. By using the transitive distance, we show that if the
consistency conditions is satisfied, the clusters of arbitrary
shapes can be mapped to a new space where the clusters are
easier to be separated. Based on the observed k-means du-
ality, we have developed an efficient algorithm that does not

need to solve the traditional eigen-decomposition problem.
Compared with the k-means algorithm, both our algorith-
m and the spectral algorithms can better handle challenging
clustering problems where the data sets are with complex
shapes, multi-scale clusters, and noise. The image segmen-
tation experiments also show the superiority and practical
application value of our proposed method.

There are associated drawbacks as well. MST sometimes
is an over-simplified and non-regularized representation of
the underlying structure, and it may cause clustering errors
around cluster margins. “Short cutting” is another prob-
lem. This, however, can be alleviated in many ways, such
as joint clustering with transitive distances from different
MSTs, sampling and local density estimation. Further im-
provements will be included in our future work.
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