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1 Introduction
Visual attributes are human-nameable object properties that serve as an in-
termediate representation between low-level image features and high-level
objects or scenes [3, 4, 5]. They can offer a great gateway for human-
object interaction. For example, when we want to interact with an unfa-
miliar object, it is likely that we first infer its attributes from its appear-
ance (e.g., is it furry or slippery?) and then decide how to interact with
it. Thus, modelling visual attributes would be valuable for understanding
human-object interactions. Researchers have developed systems that model
binary attributes [3, 4, 5]—a property’s presence/absence (e.g., “is furry/not
furry”)—and relative attributes [6, 8]—a property’s relative strength (e.g.,
“furrier than”). In this work, we focus on relative attributes since they of-
ten describe object properties better than binary ones [6], especially if the
property exhibits large appearance variations (see Fig. 1).

While most existing work use global image representations to model
attributes (e.g., [5, 6]), recent work demonstrates the effectiveness of using
localized part-based representations [1, 7, 9]. They show that attributes—be
it global (“is male”) or local (“smiling”)—can be more accurately learned
by first bringing the underlying object-parts into correspondence, and then
modeling the attributes conditioned on those object-parts. To compute such
correspondences, pre-trained part detectors are used (e.g., faces [7] and peo-
ple [1, 9]). However, because the part detectors are trained independently of
the attribute, the learned parts may not necessarily be useful for modeling
the desired attribute. Furthermore, some objects do not naturally have well-
defined parts, which means modeling the part-based detector itself becomes
a challenge. The approach of [2] address these issues by discovering useful
and localized attributes. However, it requires a human-in-the-loop, which
limits its scalability.

So, how can we develop robust visual representations for relative at-
tributes, without expensive and potentially uninformative pre-trained part
detectors or humans-in-the-loop? To do so, we will need to automatically
identify the visual patterns in each image whose appearance correlates with
attribute strength. In this work, we propose a method that automatically
discovers the spatial extent of relative attributes in images across varying at-
tribute strengths. The main idea is to leverage the fact that the visual concept
underlying the attribute undergos a gradual change in appearance across
the attribute spectrum. In this way, we propose to discover a set of local,
transitive connections (“visual chains”) that establish correspondences be-
tween the same object-part, even when its appearance changes drastically
over long ranges. Given the candidate set of visual chains, we then automat-
ically select those that together best model the changing appearance of the
attribute across the attribute spectrum. Importantly, by combining a subset
of the most-informative discovered visual chains, our approach aims to dis-
cover the full spatial extent of the attribute, whether it be concentrated on a
particular object-part or spread across a larger spatial area.

2 Approach
Given an image collection S={I1, . . . , IN} with pairwise ordered and un-
ordered image-level relative comparisons of an attribute (i.e., in the form of
Ω(Ii)>Ω(I j) and Ω(Ii)≈Ω(I j), where i, j∈{1, . . . ,N} and Ω(Ii) is Ii’s at-
tribute strength), our goal is to discover the spatial extent of the attribute in
each image and learn a ranking function that predicts the attribute strength
for any new image.

There are three main steps to our approach: (1) initializing a candidate
set of visual chains; (2) iteratively growing each visual chain along the at-
tribute spectrum; and (3) ranking the chains according to their relevance to
the target attribute to create an ensemble image representation.

Initializing candidate visual chains: A visual attribute can potentially
exhibit large appearance variations across the attribute spectrum. Take the
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Figure 1: (top) Given pairs of images, each ordered according to rela-
tive attribute strength (e.g., “higher/lower-at-the-heel”), (bottom) our ap-
proach automatically discovers the attribute’s spatial extent in each image,
and learns a ranking function that orders the image collection according to
predicted attribute strength.

high-at-the-heel attribute as an example: high-heeled shoes have strong
vertical gradients while flat-heeled shoes have strong horizontal gradients.
However, the attribute’s appearance will be quite similar in any local region
of the attribute spectrum. Therefore, we start with multiple short but visu-
ally homogeneous chains of image regions in a local region of the attribute
spectrum, and smoothly grow them out to cover the entire spectrum.

We start by first sorting the images in S in descending order of predicted
attribute strength—with Ĩ1 as the strongest image and ĨN as the weakest—
using a linear SVM-ranker trained with global image features. To initialize
a single chain, we take the top Ninit images and select a set of patches (one
from each image) whose appearance varies smoothly with its neighbors in
the chain, by minimizing the following objective function:

min
P

C(P) =
Ninit

∑
i=2
||φ(Pi)−φ(Pi−1)||2, (1)

where φ(Pi) is the appearance feature of patch Pi in Ĩi, and P= {P1, . . . ,PNinit}
is the set of patches in a chain. Candidate patches for each image are densely
sampled at multiple scales. This objective enforces local smoothness: the
appearances of the patches in the images with neighboring indices should
vary smoothly within a chain. Given the objective’s chain structure, we can
efficiently find its global optimum using Dynamic Programming (DP).

In the backtracking stage of DP, we obtain a large number of K-best
solutions. We then perform a chain-level non-maximum-suppression (NMS)
to remove redundant chains to retain a set of Kinit diverse candidate chains.

Iteratively growing each visual chain: The initial set of Kinit chains are
visually homogeneous but cover only a tiny fraction of the attribute spec-
trum. We next iteratively grow each chain to cover the entire attribute spec-
trum by training a model that adapts to the attribute’s smoothly changing
appearance. Specifically, for each chain, we iteratively train a detector and
in each iteration and use it to grow the chain while simultaneously refining
it. To grow the chain, we again minimize Eqn. 1 but now with an additional
term:

min
P

C(P) =
t∗Niter

∑
i=2
||φ(Pi)−φ(Pi−1)||2−λ

t∗Niter

∑
i=1

wT
t φ(Pi), (2)

where wt is a linear SVM detector learned from the patches in the chain
from the (t−1)-th iteration, P = {P1, . . . ,Pt∗Niter} is the set of patches in a
chain, and Niter is the number of images considered in each iteration. As
before, the first term enforces local smoothness. The second term is the
detection term: since the ordering of the images in the chain is only a rough
estimate and thus possibly noisy, wt prevents the inference from drifting in
the cases where local smoothness does not strictly hold. λ is a constant that
trades-off the two terms. We use the same DP inference procedure used to
optimize Eqn. 1.

Once P is found, we train a new detector with all of its patches as posi-
tive instances. The negative instances consist of randomly sampled patches
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Figure 2: Qualitative results showing our discovered spatial extent and rank-
ing of relative attributes on LFW-10 (top) and UT-Zap50K (bottom). We
visualize our discoveries as heatmaps, where red/blue indicates strong/weak
predicted attribute relevance. For most attributes, our method correctly dis-
covers the relevant spatial extent. Our approach is sometimes able to dis-
cover what may not be immediately obvious to humans: for “Pointy", it
discovers not only the toe of the shoe, but also the heel, because pointy
shoes are often high-heeled (i.e., the signals are highly correlated).

whose intersection-over-union scores are lower than 0.3 with any of the
patches in P. We use this new detector wt in the next growing iteration.
We repeat the above procedure T times to cover the entire attribute spec-
trum. By iteratively growing the chain, we are able to coherently connect
the attribute despite large appearance variations across its spectrum.

Ranking and creating a chain ensemble: We now have a set of Kinit
chains, each pertaining to a unique visual concept and covering the entire
range of the attribute spectrum. However, some image regions that capture
the attribute could have still been missed because they are not easily de-
tectable on their own (e.g., forehead region for “visible forehead”). Since
the patches in a chain capture the same visual concept across the attribute
spectrum, we can use them as anchors to generate new chains by perturbing
the patches locally in each image with the same amount of “perturbation".
Note that we get the alignment for the patches in the newly generated chains
for free, as they are anchored on an existing chain. We generate Kpert chains
for each of the Kinit chains, which results in Kpert×Kinit chains in total.

Not all of the visual chains are relevant to the attribute of interest and
some are noisy. To select the relevant chains, we compute the validation
ranking accuracy for every visual chain and select the top Kens chains ac-
cordingly to form the ensemble describing the attribute.

3 Results
We analyze our method’s discovered spatial extent of relative attributes as
well as demonstrating a novel application called Attribute Editor.

Visualization of discovered spatial extent: We show qualitative results
of our approach’s discovered spatial extent for each attribute in two datasets,
LFW-10 and UT-Zap50K. For each image, we use a heatmap to display
the final discovered spatial extent, where red/blue indicates strong/weak at-
tribute relevance. To create the heatmap, the spatial region for each visual
chain is overlaid by its predicted attribute relevance, and then summed up.
Fig. 2 shows the resulting heatmaps on a uniformly sampled set of unseen
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Figure 3: The middle column shows the query image whose attribute (au-
tomatically localized in red box) we want to edit. We synthesize new shoes
of varying predicted attribute strengths by replacing the red box, which is
predicted to be highly-relevant to the attribute, while keeping the rest of the
query image fixed.

test images per attribute, sorted according to predicted attribute strength us-
ing our final ensemble representation model.

Clearly, our approach has understood where in the image to look to find
the attribute. For almost all attributes, our approach correctly discovers the
relevant spatial extent (e.g., for localizable attributes like “Mouth open",
“Dark hair", and “Open”, it discovers the corresponding object-part). Since
our approach is data-driven, it can sometimes go beyond common human
perception to discover non-trivial relationships: for “Pointy", it discovers
not only the toe of the shoe, but also the heel, because pointy shoes are often
high-heeled (i.e., the signals are highly correlated). For “Comfort”, it has
discovered that the lack or presence of heels can be an indication of how
comfortable a shoe is. Each attribute’s precisely discovered spatial extent
also leads to an accurate image ordering by our ensemble representation
ranker (Fig. 2 rows are sorted by predicted attribute strength).

Attribute Editor: One application of our approach is the Attribute Editor,
which could be used by designers. The idea is to synthesize a new image,
say of a shoe, by editing an attribute to have stronger/weaker strength. This
allows the user to visualize the same shoe but e.g., with a pointier toe or
sportier look. Fig. 3 shows four examples in which a user has edited the
query image (shown in the middle column) to synthesize new images that
have varying attribute strengths. To do this, we take the highest-ranked vi-
sual chain for the attribute, and replace the corresponding patch in the query
image with a patch from a different image that has a stronger/weaker pre-
dicted attribute strength. For color compatibility, we retrieve only those
patches that have similar color along its boundary as that of the query patch.
We then blend in the retrieved patch using poisson blending.
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