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In this document, we provide additional materials to supplement our main submission. In the first section, we provide
further details on how we choose the weights (λ’s) for the different loss terms. In the second section, we show additional
qualitative examples on COCO segmentation and Visual Genome phrase localization, and in particular, examples that have
multiple labels/phrases per image; this demonstrates that our model is conditioning the attention mask generation process on
the input language, instead of simply learning a generic saliency map.

1. Setting λPC and λSIB

PC too large SIB too large Ours

holding onto 
a big teddy

a woman

PC too large SIB too large Ours

holding onto 
a big teddy

a woman

Figure 1. Visualization of attention masks for setting λPC and λSIB . For two phrases “a woman” and “holding onto a big teddy”, we show
the corresponding attention masks, for three different settings. In the first column, we show the attention masks for a model trained with
λPC being too large, which leads to the result that all attention masks are roughly the same. In the second column, we show the effect of
having too large λSIB – here, weird artifacts are generated to enforce exclusivity. Finally, with a properly set λPC and λSIB , we obtain a
reasonable visualization without artifacts. Through these visualizations, we can correctly set the weights for each loss term.

In Sec. 3.3.1 of our main paper, we have the following equation: Lstruct = λPCLPC +λSIBLSIB . Here we discuss how
we select the appropriate λ for the different terms.

Since we are working in a weakly-supervised problem setting, we do not have any ground-truth region-phrase annotations
to validate our model (i.e., computing accuracy on the held-out validation data). Therefore, we instead set the λ’s based on
qualitative visualizations.

Specifically, we find that models trained with a too high λPC start to take a shortcut – they simply predict all attention
masks to be the same, which definitely satisfies all of the parent-child constraints as implied by Eq. (2) in our main submission.
This phenomenon is shown in the first column of Fig. 1. On the other hand, if we set λSIB to be too big, the model starts to
generate weird artifacts to satisfy exclusivity between different regions of the image, without taking into account the image
content, as shown in the second column of Fig. 1. In order to generate reasonable attention masks (as shown in the last column
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of Fig. 1), we need to properly set the weights. We rely on this attention mask visualization during training to determine the
appropriate weights; in our case, λPC = 0.01 and λSIB = 0.0001.

2. Additional qualitative results
We next provide additional qualitative results with a focus on demonstrating the localization of multiple phrases per

image. We first present results of localizing phrases on Visual Genome, and then show results of localizing object labels on
MS COCO.

Visual Genome The phrase localization results on Visual Genome are shown in Fig. 2. Our model generates attention
masks conditioned on the input phrase, instead of simply outputting a generic saliency map. For example, for “the clock
tower is tall”, our model correctly highlights the clock tower in the image, whereas it is not highlighted anymore when the
input phrase is changed to “buildings by the street”.

no parking 
sign on pole

tall red brick 
building

a skate board on 
the ground

that is 
a person

the walls are 
dark purple

yellow and 
orange cat

snow covered 
park

bench is black 
and white

girl sits 
on bench

bench is 
grey stone

the clock tower 
is tall

buildings by 
the street

Figure 2. Results on Visual Genome. Our model generates different attention masks for different input phrases. The input phrases are
shown above the respective attention masks, in red font. The black box in each image is the ground-truth bounding box corresponding
to the phrase. The cyan dot denotes the maximum confidence point from our predicted attention mask. Clearly, our model outputs the
attention masks conditioned on the phrase input.

MS COCO Finally, we demonstrate that our model can generate different attention masks for different object label/tag
inputs as well. See Fig. 3. For example, we clearly see the different attention masks generated for “bus” and “sheep” in the
first pair of images, and this holds for other examples as well. These results demonstrate that our model is clearly conditioning
its attention mask generation process on the input language.

person truck

person horse pizza person pizza person

bottle keyboardbus sheep

Figure 3. Results on MS COCO. For each pair of images, the object labels are shown above the respective attention masks in red font. For
the same image, our model can generate different attention masks for different object labels.
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